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The collapse (globulization) of an ideal heteropolymer chain under the action of 
an external attractive field is considered. The problem of the collapse of 
different types of primary structures, including mobile, periodic, large-block, 
and statistical structures, is formulated. It is shown that for a random 
heteropolymer, the mathematical image of the globular state is the chain-length 
independence of the probability distribution of a random thermal distribution 
function of the end monomer coordinates. The free energy per monomer of a 
chain in a globular state and local densities of monomers of all types are shown 
to be a self-averaging quantities. An exactly solvable model is proposed for a 
globule formed by a statistical heteropolymer chain. In this model, different 
types of monomers are attracted to different centers by linear elastic forces with 
identical elastic constants. The modulus of elasticity is obtained for a 
heteropolymer globule with respect to the attraction of different types of 
monomers in different directions. It is shown that this modulus is higher for a 
short-periodic polymer than for a statistical one. 

KEY WORDS: Polymer collapse; heteropolymers; one-dimensional disordered 
systems. 

I N T R O D U C T I O N  

By h e t e r o p o l y m e r s  we m e a n  a m o l e c u l a r  cha in  cons is t ing  o f  different  types  

o f  links. The  condensed  g lobu la r  states o f  such he t e ropo lymers ,  l ike pro te ins  

and D N A ,  are o f  p r i m a r y  i m p o r t a n c e  in b io logy.  The  d i s cove ry  o f  the 

mol t en  state of  pro te in  g lobules  t r iggered  the special  in teres t  in the phys ica l  

theory  o f  h e t e o p o l y m e r  globules .  (~) 

A sys temat ic  a p p r o a c h  to the t heo ry  o f  h o m o p o l y m e r  g lobules  was  first 

p roposed  by I. M. Lifshi tz  (1) and subsequen t ly  deve loped  in a series of  
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articles (see reviews in Refs. 2, 3). The predictions of the Lifshitz theory are 
in quantitative agreement with the available experimental results. (4) 

The first step of the Lifshitz theory was the consideration of a 
homopolymer collapse without any volume interactions under the influence 
of an external attractive field. Hence, it is natural to use such a problem as 
the starting point for constructing the theory of heteropolymer globules. 

A distinguishing feature of the heteropolymers is that different types of 
links are subjected to different fields ~ (x ) ,  the index a running over the 
values corresponding to the types of links in the heteropolymer. 

The problem of globulization of a heteropolymer in an external field is 
apparently independently interesting from a physical point of view due to the 
question concerning the adsorption of such macromolecules. The relative 
simplicity of this problem stems from fact that in the absence of volume 
interactions, a macromolecule remains one dimensional in a certain sense, 
and its wandering in spatially inhomogeneous fields is a Markov process. 

2. GREEN'S FUNCTION AND THE PARTITION FUNCTION 

It is convenient to write the Green's function, i.e., the partition function 
of a polymer with fixed ends, in the form 

(' . ) ;  G : ~(X -- XN) H Oa(t)oz(l--1)(~(y-Xl)d3XNd3X1 (1) 
y x t=2 

Here, t is the number of the link in the chain, the function a(t) describes the 
primary structure, and the transfer operator has the form 

Q ~ , =  exp [-~%(x)/T] ~ ,  (2) 

where the operator o~,,~, characterizes the bond between the links a and a ' ;  it 
can be assumed on the basis of the beads-on-a-string model <3) that this 
operator has a difference kernel g ~ , ( l x -  x' [), for example, the Gaussian 

exp -~7;7 ] (3) 

a~,,, being the length of the corresponding bond. 
Since we are not interested in the translational entropy of the chain as a 

whole, we shall assume that the starting point of the chain is fixed at the 
origin (y = 0). Accordingly, we can use the simplified notation for the 
Green's function 

" - '  " ( ~  [ N ]  ~ GN(X) (4) G 
\ U  [ / X 
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Obviously, the partition function Z N of a chain is equal to 

zN = S 6N(,,) (5) 

In this approach, the distribution function of the end of the chain plays the 
most significant role. This function can be written in the form 

VN(X) = 6N(X) /Z  u (6) 

It is convenient to consider the Green's function as a vector in the 
corresponding functional space. It is important to note that all the 
components of this vector in the x representation are positive [GN(X ) > 0 for 
all x(1)). Z N is the norm of the vector GN. Correspondingly, the norm of the 
vector ~'N is equal to unity (f qtN(X ) d3x = 1). On the basis of the geometric 
analogy, it can be stated that the quantities Z N and ~'N define the length and 
the direction, respectively, of the vector G~. 

From the definition (1) of the Green's function, the following recurrence 
relation is apparent: 

o,+,(x) = C,(x) (7) 

or 

[z,+ 1/zt] = (8) 

3. FORMULATION OF THE GLOBULIZATION PROBLEM 
FOR MAIN TYPES OF PRIMARY STRUCTURES 

3.1. Homopolymer 

Let us recall the main points of the Lifshitz theory for a homopolymer 
globule. (1) All operators Q are identical for a homopolymer, and the 
situation is determined by the form of the spectrum for the operator Q. If the 
highest eigenvalue A of the operator Q is discrete and is separated from the 
next value by a gap, a repeated application (t ~ ~ )  of the operator Q will 
make the vector G t exponentially approach the direction of the highest eigen- 
vector q/of the operator (~(Qq/= Aq/) in accordance with (8), while the norm 
of the vector G will increase exponentially, i.e., 

q6v(x) ~ q/(x), Z N ~_A ~v (N  ~ co) (9) 

According to the terminology used in Ref. 6, this situation is called the 
"ground-state dominance." 
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Stabilization of the distribution function for the terminal link is typical 
just of the globular state. Indeed, such a stabilization means that the charac- 
teristic volume of the chain localization is independent of N [since the 
function ~,(x) belongs to the discrete spectrum, i.e., rapidly decreases with 
increasing Ixl), and is determined by the form of the potential well ~0 
appearing in the expression (2). 

On the other hand, if the operator Q has a continuous spectrum, the 
distribution function ~,N(x) for the chain end does not stabilize with 
increasing N and continues to spread indefinitely (the localization volume is 
of the order of N 3/2, i,e., tends to infinity as N-~ oo). 

3.2. Mobile Primary Structure 

The simplest case to be investigated is the one in which the affiliation of 
a link to a certain type (A or B) may change during the thermal motion 
either on account of the adsorption of small molecules from the solution (7) or 
due to the helix-coil transition (in the latter case, the secondary structure 
plays the role of mobile primary structure). Globulization of such a 
heteropolymer has been investigated in Ref. 8. In this case, the underlying 
idea is that the Green's function can be reduced to a "homopolymer" form, 
but the role of the operator Q here must be played by an appropriate matrix 
of the operators Q~,,. 

3.3. Periodic Primary Structures 

This case can be easily reduced to a homopolymer by considering a 
heteropolymer period as a link of an effective homopolymer. 

3.4. Large-Block Primary Structures (= Block Copolymers) 

If links of A and B type form long homogeneous series along a chain, 
and the operators QAA and QnB have discrete spectra, the function ~t is close 
to ~A or ~'B for almost all values of t (i.e., close to the highest eigenfunctions 
of the operators Q-.AA and One, respectively). However, the norm of the vector 
G is multiplied by the cosine of the angle between the directions of ~A and 
~'s upon every transition from the block A to the block B and vice versa. 
Hence, the partition function is equal to 

ZN=[ACAA~I-~)lX [ J'_~A (x) ~.(x) _d3_x x ] "",,~ (I0) 
L [Y d(x) a3x Y  4(x) a3x] 1/2 j 

where c and (1 - c) are the fractions of links of A and B types, and NAB is 
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the number of boundaries between blocks A and B (N/NA~ is the average 
length of the block). 

The meaning of this formula is quite simple. Basically, each 
homopolymer block is globulized (adsorbed) in its potential well, and the 
corresponding free energy per monomer is given by f =  [clnA~ + 
(1--e) lnAB]T.  However, the stretching of every segment of the chain 
connecting the neighboring A and B blocks between the wells ~0 A and ~0~ 
makes an additional contribution Af=-Tln(gtA ; ~,B). As expected, such a 
stretching is thermodynamically disadvantageous: Af > 0, since the 
overlapping integral is less than unity. 

3.5. Statistical Primary Structures 

A special feature of statistical heteropolymers is that the number of 
different chains of length N increases exponentially with N and is equal to 
2 u. Hence, any reasonable quantity of matter contains a negligibly small 
fraction of all possible macromolecules. Thus, the thermodynamic charac- 
teristics of a globule are, in principle, random quantities. Consequently, their 
statistical properties must be investigated. It should be emphasized that the 
quantities already averaged over ordinary thermal fluctuations are random 
due to a random choice of the primary structure realization. In other words, 
we must investigate the probabilistic statements that can be made about the 
spatial structure and thermodynamic functions of a globule on the basis of 
incomplete information on the primary structure of a chain. 

For the sake of definiteness, we shall consider that the primary structure 
is the realization of the process of independent trials: the monomers A and B 
are assumed to occupy each position with probability e and (1 - e ) ,  respec- 
tively, regardless of the neighboors. 

In the first place, it is necessary to consider the criterion for 
distinguishing between the coil and globular states for a statistical 
heteropolymer. According to the general definition given by Lifshitz, ~1'2) a 
globule, unlike a coil, is a weakly fluctuating state of a macromolecule; the 
correlation length along the chain in a globular state must be small in 
comparison to the chain length. 

In a homopolymer with a discrete spectrum of the operator Q, this is 
ensured by an exponential stabilization of the distribution function qt t of the 
chain end. At a finite (i.e., small in comparison to N ~> 1) distance r, the 
chain terminal almost "forgets" the initial condition (concerning the fixing of 
the first link), and gt t becomes equal to ~,. 

The stabilization of qJt(x) in a heteropolymer is impossible, since 
different operators Q ~ ,  do not commute and have different complete 
systems of eigenfunctions. Hence, each application of the operator Q (7) 
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rotates the vector G t at once through a finite angle. The quantity G t is 
random, since it depends on the primary structure. However, the direction of 
the vector G t in the globular state must depend not on the entire primary 
structure and, in particular, not on the length of the chain under 
consideration. The influence of the link ( t -  r) on the distribution function 
~t(x) of the terminal link t in the globular state must decrease sharply with 
increasing r. Roughly speaking, ~,t(x) is determined by the primary structure 
of the last segment of a chain of a certain finite length r. The number of 
different terminals of length r is equal to 2 r. Hence, the probability 
distribution of the quantity ~/t for t >> r2 r must stabilize: 

Pt{~(x)} , P{~(x)} (11) t--*oO 

It should be recalled that the stabilization of the probability distribution of 
the phase variable is a common phenomenon in the theory of one- 
dimensional disordered systems (see, for example, Refs. 9 and 10). Such a 
stabilization in a polymer chain (11) is a distinguishing feature of the 
globular state. In the coil state, the functions ~t(x) "spread" indefinitely with 
increasing t. 

The functions ~,t(x) form a Markov chain, because operator Q,~(t),~(t-~) 
and the vector Gt_ 1 in Eq. (7) are statistically independent. The transfer 
operator /~ of this chain (I~Pt=Pt+l) can be easily written formally. The 
operator /~ itself is not random, although it depends on the probability 
distribution of operators Q, i.e., on the local statistical properties of the 
primary structure, i.e., on c. Apparently, the globularity condition (11) is 
satisfied if and only if the highest eigenvalue of the operator / f  is discrete. 
The limiting functional P{~,} is the highest eigenvector of the operator/s 

In accodance to (8), the free energy per monomer is equal to 

f =  _ NT In Z N - -  NT In ,I 0o~(t)~(/- 1) I//t-1 d3x (12) 

In view of the boundedness of the correlation radius in a globule, the central 
limit theorem can be applied to the sum (12). Consequently, the globular free 
energy is a self-averaging quantity, (9) i.e., it has a normal distribution with a 
variance ~N -1/2 ~ 1, and its mean value is equal to 

( f ) = - T ( l n f Q I g d 3 x )  (13) 

It is easy to see that the density distributions of the monomers n~(x) are self- 
averaging quantities also, and, respectively, mean values are equal to 

(n~(x)) = e x p [ - - ~ ( x ) / T ] ( ( ~ ) )  z (13a) 
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The averaging of the right-hand sides of (13) and (13a) is carried out by 
considering that (a) the operator Q and the function ~ are statistically 
independent; (b) the distribution of Q is determined by the value e; and (c) 
the distribution of ~t is the limiting functional P{~t} (11). 

4. AN EXACTLY SOLVABLE MODEL OF A 
HETEROPOLYMER GLOBULE 

It is desirable to consider a simple model in which the abstractions of 
the previous section could be defined more specifically by explicitly carrying 
out all calculations. As a matter of fact, the Green's function (1) for a chain 
with Gaussian bonds (3) can be easily calculated if all fields have a 
quadratic dependence on the coordinates2: 

~%(x) = ~k~(x - ~ ) 2  (14) 

For the sake of simplicity, we shall assume that all "centers of 
attraction" ~ lie on the x axis, and that the lengths of all bonds a (3) are 
equal. Then evidently, the distribution function of the end of the t-link chain 
is given by 

t_Z', (x- I ~ut(x) --- const ex p I 2 a 2 - ~ a  - - ~ ( y 2 + z 2 )  (15) 

The following recurrence relations for the parameters s)! s{, and r/t can be 
easily derived with the help of (7): 

2 The author is grateful to S. A. Molchanov for this comment. 

Fig. 1. Schematic picture of a heteropolymer globule. Black beads represent the A-type 
links, white stand for the B4ype links. Due to the springs each a-type link has the potential 
energy O, = ~k(x -- ~)2. 
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8~1, • a 2 

= + T  ko,'+', 
sll a z 

ti ~  t I q-Sl  ] "~-~a(t+l)ka(t+l)  T 

tit+l = sl I a 2 
1 t ;~slt + kc~(t+ 1) 

(16) 

(17) 

For any fixed primary structure a(t), all parameters of the function ~,t(x) can 
be calculated step by step. 

Without loss of any qualitatively interesting features of the result, we 
shall assume for the sake of simplicity that all elastic constants k s are iden- 
tical. The opposite case, when ~ = 0 and k s have different values, is 
considered in Ref. 11. 

For the same values of k, the quantities s~ I and st ~ meet at a stable fixed 
point as t ~ m:  

l = ~ - +  --~--+ \ ~ - ]  (18) 

This simply means that a homopolymer in the parabolic field (14) is in the 
globular state, which is obvious from the physical point of view. By using 
(18), we can simplify relation (17) to the following form: 

ka2 t 
t i t+l=tl t  1--  T s * }  

k a  2 
+~t+l TS* (19) 

Thus, the function ~,t(x) is determined by a single parameter tit. Accordingly, 
it is sufficient to consider the probability distribution Pt(ti) instead of the 
functional Pt{~}. If ~ (~ )  is the probability distribution for ~, we can easily 
find from (19) that 

Pt+l(ti) =--~a2 j 9 ~ti--~TaZ [ ka 2 1 Pt(ti ')dti '  =--I~P t (20) 

It is not difficult to verify that the operator/~ has a discrete spectrum, i.e., 
Pt(ti) tends to a stable fixed point as t-o oo. Consequently, a random 
heteropolymer in the fields given by (14) is globulized. 

The nature of the limiting distribution P(ti) can be easily determined for 
the case when a heteropolymer contains two types of links, i.e., 

5~(~) = c6(r  - G )  + (1 - c) 6(~ - G )  (21) 
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In this case, we can rewrite (20) in the following form: 

_ ka 2 ]- 
Pt+l(t])= 1 TS* J 

( ka2 ,, 

Ts* / 

+ (1 -- c) Pt 
1 ka2 !  Ts* / 

(22) 

It can be verified that r/ lies in the interval (~A;~B) for any pr imary 
structure, i.e., all Pt(rl) are concentrated over this interval. Using a graphic 
representation for relation (19) (Fig. 2) and starting with an arbi trary P0(q), 
say, with the uniform distribution in the interval (~A;~B), we can see that  
each iteration (22) adds a system of intervals into the interval (~A ; ~B), and 
within these additional intervals, the next and all subsequent distributions 
Pt(r]) vanish. The total length of all such intervals tends to I~A--~8[ as 
t ~ oo. Consequently,  the limiting distribution P(r/) differs from zero only at 
points of  a Kantor  set with a measure equal to zero. In other words, W(r/) = 
f"ooP(tl')dtl' is a Kantor  function. (12) The physical  meaning of  such a 
singular result is quite simple: the set of  possible pr imary  structures is 
infinite but countable, and cannot densely cover a continuous interval. On 
the other hand, it can be easily seen that  pr imary  structure with only similar 
terminals contribute to any integral over a small segment on the r/ axis. 

In order to avoid misunderstandings,  it should be mentioned that the 
vanishing of P(r/) on a certain segment of  the r/ axis rules out the 
impossibility of  the center of  ~u(x) to belong to this segment. Natural ly,  the 
terminal monomer  itself can lie at any point. 

Let us now calculate the free energy of a heteropolymer globule. In this 
case, formula (13) assumes the form 

ln(  + + (23) 

The statistical independence of  r/ and ~, as well as the distribution (21) for ~, 
must be taken into account  while averaging. In order to calculate (t/), we 
must use the relation (22) and note that f tlPt+l(~l)dtl-f tlPt(tl)drl--+O as 
t ~  oo. The value of (r/2) is obtained in a similar manner.  As a result, we get 

822/38/1-2 II 
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B-type t-th link. 
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2 

Fig. 2. An arbitrary (t-th) link undergoes a Brownian motion, r h being its average coor- 
dinate. The value of r/t depends on the primary structure, i.e, on the type of links t, t -  1, 
t - 2,.... This figure illustrates the graphic method of determination of fit (if the value of r h 
is given) for the cases of the A-type and B-type t-th link. The value P(fl) is proportional to the 
number of primary structures, for which the average coordinate of a terminal chain link is r/. 
The graphic reccurence procedure of determination of P(t/) is also shown in the figure. It can 
be seen that at any r/0 the value of r h cannot appear in the middle part of  the interval (ffA ; ~B); 
for r h we have 3 forbidden intervals etc. For r/~ practically all the points are forbidden, the 
value of P(fl) is not equal to zero only in the points of the Kantor  set. 
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the following expression for the free energy of a statistical heteropolymer 
[this calculation is possible due to the linearity of (19)]: 

3 T  3k 
( f )  = @ ln(1 + s*) + ~ e(1 -- e)(~ A -- ~)2  (24) 

L z t S - , -  

The second term in this formula describes the entropic elasticity of a 
heteropolymer globule whose A links are attracted to the center ~A, and B 
links to the center ~8. The coefficient of (~A - ~ ) 2  can be interpreted as the 
corresponding elastic constant. It can be seen that the elasticity is maximum 
at e = 1/2. Clearly, it is for e = 1/2 that the number of unfavorable tran- 
sitions from one well to another is maximum. 

For the sake of comparison, let us consider the expression for the free 
energy of a globule formed by the periodic heteropolymer ..MBABAB... : 

3 l + s *  
f =  ln(1 + s * ) + ~ - k  (2 + s , )  2 (~A- ~ )  2 (25) 

As expected, the elastic energy for a short-periodic heteropolymer is higher 
than for a random heteropolymer [2(1 + s*)/(2 + s*) > 1]. Indeed, all bonds 
are stretched in a periodic polymer, while a fluctuational accumulations of 
similar links exists in a random polymer, and their bonds are not stretched 
[naturally, the elasticity (10) of a large-block polymer is much smaller, 
because NAB ,~ N]. 

It is also natural that the elastic constant vanishes for ka2,~ T and 
increases with k. For ka  2 >~> T, when the monomers are in fact rigidly fixed to 
the appropriate centers, the elastic constant of a random globule is equal to 
3e(1 - e ) / a  2 per monomer. The corresponding value for a periodic globule is 
3/2a 2. These results are obvious, since 3/2a 2 is the elastic constant for a 
single bond (3) and 2 e ( 1 -  e) is the mean value of (A-B)  bonds concen- 
tration. 

5. CONCLUDING REMARKS 

The perturbation theory for the free energy of a globule has been 
constructed in Ref. 13 for the case when the fields ~0~ (or the operators Q) 
are similar. The self-consistent theory of a globule in the volume approx- 
imation has also been considered there. It was shown that in this approx- 
imation, a heteropolymer can be described as an effective homopolymer with 
mean virial coefficients. The consequences of this fact are analyzed in 
Ref. 14. 
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